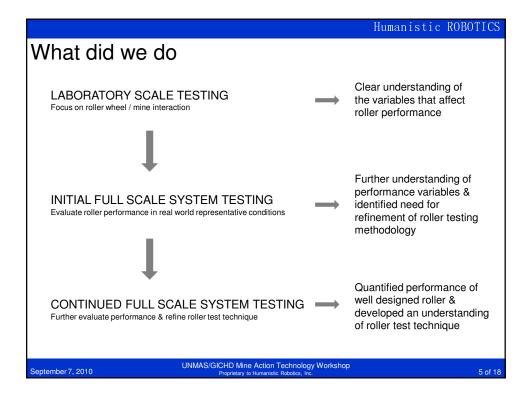

Roller Trials and Concept of Roller Testing

UNMAS/GICHD Mine Action Technology Workshop 2010

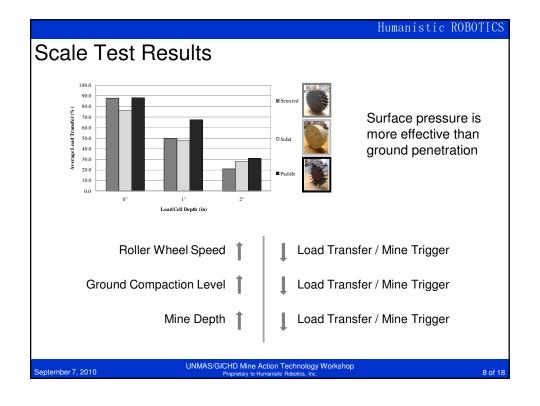

Erik de Brun Humanistic Robotics Inc. September 7, 2010

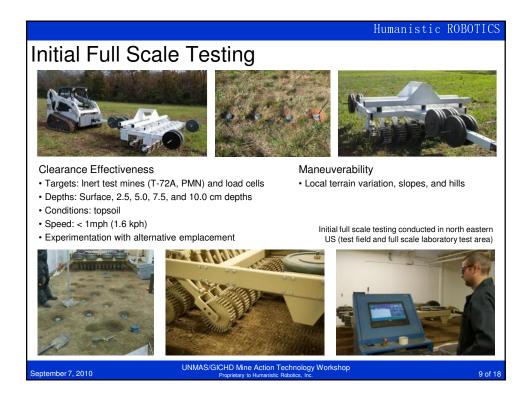
UNMAS/GICHD Mine Action Technology Workshop

Laboratory Scale Testing

What characteristics affect roller performance?

- · Tested 3 wheel types: solid, paddle, serrated
- Tested 3 soil types: sand, topsoil, gravel
 - Per CEN Workshop Agreement 15044:2004





September 7, 2010

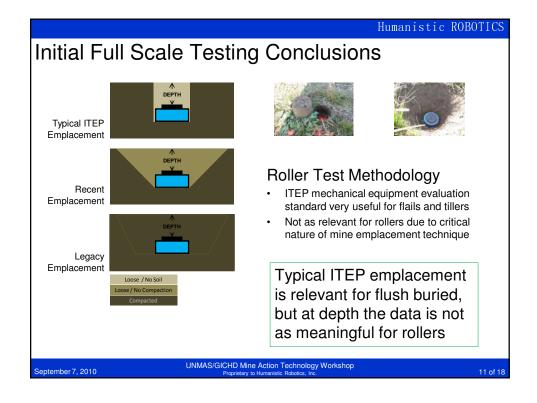
UNMAS/GICHD Mine Action Technology Workshop

Laboratory Scale Testing Measured load transfer and inert test mine trigger threshold while varying: • Wheel type • Soil condition • Soil compaction • Applied Load UNMAS/GICHD Mine Action Technology Workshop Proprietary to Humanistic Robotos, Inc. Humanistic RoboTICS Humanistic RobOTICS Humanistic RobOTICS RoBOTICS Humanistic RobOTICS Laboratory Scale Testing

Initial Full Scale Testing Conclusions

Key Characteristics of Effectiveness

- Maintain even ground pressure
- Each roller wheel must maintain threshold ground force while allowing independent vertical travel
- Roller wheel width and overlap must be designed to minimize bridging



September 7, 2010

UNMAS/GICHD Mine Action Technology Workshop

Full Scale Testing Conclusions - Performance

Confirmed scale testing results

• Increasing mine depth, roller speed, and compaction level of mine overburden all lead to a decrease in mine activation

Roller Speed
Mine Trigger

Overburden Compaction

Mine Depth

Mine Trigger

Mine Trigger

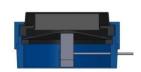
September 7, 2010

UNMAS/GICHD Mine Action Technology Workshop Proprietary to Humanistic Robotics, Inc.

13 of 18

Humanistic ROBOTICS

Continued Full Scale Testing - Emplacement



Mine Emplacement Technique (Legacy Simulation)

- In order to test legacy conditions need specialized mine simulants
 - Electronic Mine Sensor: real time measurement of pressure plate displacement (PMN-2) [shown above]
 - Mechanical Lock Out: integrated into an inert test mine (T-72A) [shown below]
- To simulate a legacy condition the soil is compacted above and around the mine simulant until uniform heavy compaction is reached

eptember 7, 2010

UNMAS/GICHD Mine Action Technology Worksho

Full Scale Testing Conclusions - Emplacement

- · Legacy mine emplacement is the critical test point
 - While holding all test conditions constant and varying only the emplacement technique, we found that for a given roller system weight the mine detonation percentage and pressure plate deflection are lower for legacy mine emplacement

Emplacement	Depth (cm)	Pressure Plate Deflection (cm)
Recent	7.5	0.089
Legacy	7.5	0.038
Recent	10.0	0.069
Legacy	10.0	0.020

Electrical simulant (PMN-2) 7.5 and 10.0 cm depth Pressure plate deflection versus emplacement

Mechanical Lock-out simulant (modified T-72A)
2.5 and 5.0 cm depth
Mine detonation versus emplacement

Emplacement	Depth (cm)	Detonation %
Recent	2.5	100%
Legacy	2.5	95%
Recent	5.0	100%
Legacy	5.0	33%

September 7, 2010

NMAS/GICHD Mine Action Technology Workshop Proprietary to Humanistic Robotics, Inc. 15 of 18

Humanistic ROBOTICS

Overall Conclusions

- HRI testing has shown that a well designed roller can consistently detonate simulated recently and legacy emplaced mines up to a depth of 10 cm
 - Dependent on mine type and specific ground conditions
 - Need to test at depths below 10 cm
- A legacy mine is more challenging to detonate than one that has been recently emplaced
- Roller performance testing at depths below flush buried that does not include simulated legacy mine emplacement does not fully represent real world conditions
- Comprehensive roller testing can provide a good basis for comparison between roller systems and potentially other mechanical equipment

September 7, 2010

UNMAS/GICHD Mine Action Technology Workshop
Proprietary to Humanistic Robotics, Inc.

Video

Humanistic ROBOTICS

September 7, 2010

UNMAS/GICHD Mine Action Technology Workshop Proprietary to Humanistic Robotics, Inc.

17 of 18

Acknowledgements

Humanistic ROBOTICS

Rich Vanaman - US Army Armaments Research, Development and Engineering Center (ARDEC)

Pehr Lodhammar - Geneva International Center for Humanitarian Demining (GICHD)

Geoff Coley - Defense Research and Development Canada Suffield

Geoff Gwaltney - Michigan Tech Keweenaw Research Center

Patrik Blomander - Swedish EOD and Demining Center (SWEDEC)

September 7, 2010

UNMAS/GICHD Mine Action Technology Workshop
Proprietary to Humanistic Robotics, Inc.